

INSTITUT NATIONAL DU CANCER

Immune dysfunction in ovarian carcinoma and implications for immunotherapy

Vassili SOUMELIS, MD, PhD Professor of immunology Hôpital St Louis, Paris

> Team leader Institut Curie, Paris

Séminaire de restitution des projets financés par le programme PAIR GYNECO La Rochelle, 23 novembre 2018

- Equipe 1: V Soumelis/S Amigorena, Inserm U932, Curie
- Equipe 2: C Caux/N Bendriss-Vermare/Ray-Coquard, CRCL U-1052/ CLB
- Equipe 3: F. Penault-Llorca/ C Pomel, Centre Jean Perrin
- Equipe 4: L Zitvogel, IGR

Main steps to induce anti-tumor immunity

May KF Jr et al. In: Prendergast GC et al. Cancer Immunotherapy. 2nd ed. Elsevier; 2013:101–113.

The ambivalent role of the immune system in cancer

Evidence of tumor immunosurveillance in ovarian cancer

Tumor-infiltrating lymphocytes Correlation with survival in ovarian cancer patients Tumor-infiltrating plasma cells are associated with Tertiary Lymphoid Structures, cytotoxic T cell responses and superior prognosis in ovarian

CD3/Tcell CD8/CTL CD20/Bcell CD21/FDC CD208/DC PNAd/HEV

Intraepithelial TILs are a robust predictor of outcome in ovarian cancer and define a specific class of patients

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Zhang(2003)	0.61	0.18	12.5%	1.84 [1.29, 2.62]	
Sato(2005)	1.11	0.307	8.8%	3.03 [1.66, 5.54]	
Hamanishi(2007)	2.031	0.518	4.8%	7.62 [2.76, 21.04]	→
Callahan(2008)	0.548	0.222	11.2%	1.73 [1.12, 2.67]	
Han(2008)	0.563	0.258	10.1%	1.76 [1.06, 2.91]	
Tomsova(2008)	1.308	0.296	9.1%	3.70 [2.07, 6.61]	
Adams(2009)	0.694	0.315	8.6%	2.00 [1.08, 3.71]	
Clarke(2009)	0.282	0.106	14.5%	1.33 [1.08, 1.63]	
Leffers(2009)	1.02	0.251	10.3%	2.77 [1.70, 4.54]	
Stumpf(2009)	0.895	0.258	10.1%	2.45 [1.48, 4.06]	
Total (95% CI)			100.0%	2.24 [1.71, 2.92]	•
Heterogeneity: Tau ² =	0.12; Chi ² = 29.38, d				
Test for overall effect:	Z = 5.92 (P < 0.0000	TIL favors death TIL favors survival			

Fig. 2. Forest plot of associations of TILs with overall survival in select studies.

Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol. 2012;124(2):192-8.

Immune evasion in ovarian cancer through recruitment of immunosuppressive cells

Regulatory T lymphocytes (Treg) inhibit conventional T cell activation

Nature Reviews | Immunology

Adapté de : Wood, K.J. and Sakaguchi, S. (2003) Nat Rev Immunol 3, 199-210

- Increased Treg frequency in blood of patients suffering from different cancer types (Udaya 2002, Wolf 2003)

Regulatory T cell (Treg) Infiltration Is a Bad Prognosis Factor in Ovarian Tumor

Immune evasion in ovarian cancer through recruitment of immunosuppressive cells

Dichotomy between M1/M2 phenotypes

A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients

Hypothesis and objectives PAIR GYNECO IMMUNO program

- <u>General hypothesis</u>: characterization and understanding of these mechanisms together with the identification of the tumor and immune determinants that contribute to anti-tumor immunity will allow the development of innovative therapeutic strategies inducing and/or restoring anti-tumor immunity.
- <u>Overall objectives</u>:
 - To identify pathways contributing to immune evasion in OC
 - To discover targets to restore anti-tumor immunity in OC

A patient-centric strategy: from the patient and back to the patient

Diversity of human dendritic cell subsets

Functional specialization of DC subsets

High tumor infiltration by IFNa-deficient plasmacytoid DC is associated to poor clinical outcome

<u>Natural</u> Interferon <u>P</u>roducing <u>C</u>ells

ROLE IN ANTI-VIRAL DEFENSE

Ovarian cancer

Labidi-Galy et al, OncoImmunol 2012

Labidi-Galy et al, Cancer Res 2011

Human inflammatory dendritic cells induce Th17 cell differentiation

Immunity 38, 1-13, February 21, 2013 BDCA1 macrophages CD16+ D HLA-DR CD16 Inflammatory DC BDCA1+ 103 104 0 105 104 CD14+ FceRI+ Sirpa+ CD11c BDCA1

Ovarian cancer ascites

infDC represent a distinct DC subset

(Gene expression profile – microarray Affymetrix)

infDC induce Th17 cells

Segura et al, Immunity 2013

CD141⁺ DC (cDC1) are enriched in ovarian cancer among other DC populations

In contrast to pDC, cDC1 can be reactivated and produced IFN-L in cancer

Breast cancer

Hubert et al, in revision

Definition of tumor inflammation states using large-scale multiprocessing analysis of human primary ovarian cancer and breast tumors

- Tumor versus juxtatumors
 - T low versus T high

Sirven et al, manuscript in preparation

Broad profiling of tumor inflammatory mediators in ovarian cancer

(T) Tumor n=22(JT) Juxtatumor n=17(K) Kystic lesion n=18

Analysis of tumors from patients with paraneoplastic neurological syndromes to study salient features and initiation of anti-tumor immunity

- Rare autoimmune disease
- High levels of autoAb
- Tumors often small and hard to diagnose
- Proof of efficient tumor immune surveillance?

Yo paracerebellar degenerations

Quantification of the Immune infiltrate in ovarian tumors (HPS staining)

Tumor (Tu.) – Immune Stroma (IS)

Immune score

Small et al. Acta Neuropathol. 2018

Immune activating and suppressive pathways in ovarian cancer:

From new mechanisms to clinical perspectives

	Anti-tumor immunity	Biomarker	Therapeutic targeting
BDCA3 ^{high} DC	+	???	Activation Induction of IFN-lambda TLR-3 ligands
Plasmacytoid DC	_	Bad prognosis	Depletion
Inflammatory DC	???	???	???